A pilot experiment in integrated interdisciplinary teaching at the university level: mathematics and music

Authors

  • Mariana Montiel Hernández Universidad Estatal de Georgia. Estados Unidos Author

DOI:

https://doi.org/10.14516/fde.532

Keywords:

mathematics and music, postonal analysis, musical set theory, group theory, ontosemiotic approach

Abstract

In the present work a report and an analysis of an interdisciplinary experience that was carried out under a special program to encourage the development of pilot projects with this character is presented. The proposal for the collaboration between the courses Postonal Analysis at the School of Music of Georgia State University (GSU) in the United States and Mathematical Music Theory at the Department of Mathematics and Statistics from the same university, was selected in a competition whose subject was interdisciplinary and integrated course pairing. This article consists of a presentation of some documented antecedents of this particular combination at the university level, a description of the content of both courses and the participants in this pilot, as well as an analysis of data gathered at the end of the course. A group interview was video – recorded and the general analysis of the information was carried out by means of a conceptual framework adapted to the novel combination of these disciplines. The aim was that the analysis and the conclusions could be circumscribed to concrete parameters to be able to detect, if it was the case, the precise characteristics of the collaboration that contributed to the enhancement of the processes of teaching and learning in both disciplines.

References

Aceff-Sánchez, F., Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M., & du Plessis, J. (2012). An Introduction to Group Theory. Applications to Mathematical Music Theory. Bookboon Ventus publishing. Recuperado de: http://bookboon.com/en/textbooks/mathematics/an-introduction-to-group-theory

Andreatta, M. (2012). On two open mathematical problems in music theory: Fuglede spectral conjecture and discrete phase retrieval. Recuperado el 29 de junio de 2016, de: http://repmus.ircam.fr/_media/moreno/algebraseminar_dresden_andreatta_nov2012_.pdf

Bensen, D. (2006). Music a Mathematical Offering. Londres: Cambridge University Press.

Chahine, I., & Montiel, M. (2015). Teaching Modeling in Algebra and Geometry Using Musical Rhythms: Teachers’ Perceptions on Effectiveness. Journal of Mathematics Education, 8(2), 126-138.

Clough, J., & Myerson, G. (1985). Variety and multiplicity in diatonic systems. Journal of Music Theory, 29(2), 249-270.

Cohn, R. (2016). Variety and multiplicity in diatonic systems. Journal of Music Theory. Meeting Abstract Issue, 37(2).

Crans, A., Fiore, T., & Satyendra, R. (2009). Musical actions of dihedral groups. American Mathematical Monthly, 116(6), 479-495.

Dartmouth College. (2002). Mathematics Across the Curriculum Bookshelf. Recuperado el 21 de julio de 2016, de: https://math.dartmouth.edu/~matc/

Demaine, E., Gómez, F., Meijer, H., Rappaport, D., Taslakian, P., Toussaint, G.T., Winograd, T., & Wood, D.R. (2009). The Distance Geometry of Music. Computational Geometry: Theory and Application, 42, 429-454.

Douthett, J., & Krantz, R. (2007). Maximally Even Sets and Configurations: Common Threads in Mathematics, Physics, and Music. Journal of Combinatorial Optimization, 14, 385-410.

Fiore, T. (2006, 2007, 2009). Contenidos de cursos y proyectos estudiantiles del programa REU (Research Experience for Undergraduates) de la Universidad de Chicago. Recuperado de: http://www-personal.umd.umich.edu/~tmfiore/1/music.html

Godino, J.D., & Batanero, C. (1997). Clarifying the meaning of mathematical objects as a priority area for research in mathematics education. In Sierpinska A., & Kilpatrick, J. (Eds.), Mathematics Education as a Research Domain: A search for Identity (pp.177-195). Dordrecht: Kluwer, A.P.

Godino, J.D., Batanero, C., & Font, V. (2007). The ontosemiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135.

Godino, J.D., & Font, V. (2007) Algunos desarrollos y aplicaciones de la teoría de las funciones semióticas. Recuperado el 21 de julio de 2016, de: http://www.ugr.es/~jgodino/indice_eos.htm

Gómez, F. Matherhythm. Recuperado el 18 de octubre de 2016, de: http://www.webpgomez.com/artes/contrasteatro-contrastheatre/396-matherhythm-or-rhythm-is-a-killer-eng

Haack, J.K. (1991). Clapping Music-A Combinatorial Problem. The College Mathematics Journal, 22(3), 224-227.

Hall, R. (2014). Acoustics labs for a general education math and music course. Journal of Mathematics and Music, 8(2), 125-130.

Hart, V. (2009). Symmetry and transformations in the musical plane. In Kaplan, C., & Sarhangi, R. (Eds.), Proceedings of Bridges 2009: Mathematics, Music, Art, Architecture, Culture (pp. 169-176). Londres: Tarquin Publications.

Hughes, J. (2014). Creative experiences in an interdisciplinary honors course on mathematics in music. Journal of Mathematics and Music, 8(2), 131-144.

Johnson, T. (2008). Foundations of Diatonic Theory: A Mathematically approach to Music Fundamentals. Lanham: Scarecrow Press.

Johnson, T. (2013). Challenges and Rewards of Teaching Math-Music to Different Populations. Charlotte: Society for Music Theory in Charlotte.

Jones, A. (2016). Geometry, consonance, and the non-specialist: Pedagogical interdisciplinary and math/music undergraduates, Spring Southeastern Sectional Meeting, Special Session on Mathematics and Music. Journal of Music Theory. Meeting Abstract Issue, 37(2).

Kovachi, J. (2014). Musica speculative for the twenty-first century: integrating mathematics and music in the liberal arts classroom. Journal of Mathematics and Music, 8(2), 117-124.

Mayén, S., Díaz, C., & Batanero, C. (2009). Conflictos semióticos de estudiantes con el concepto de mediana. Revista latinoamericana de investigación en matemática educativa, 8(2), 74-93. Recuperado el 21 de julio de 2016, de: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-24362009000200002.

Mazzola, G. (2016). Encyclospace. Recuperado de: http://www.encyclospace.org/

Milmeister, G. (2009). The Rubato Composer Music Software: Component-Based Implementation of a Functorial Concept Architecture. Berlín: Springer-Verlag,

Montiel, M. Mathematical Music Theory in Shanghai. Recuperado el 7 de julio de 2016, de: https://www.youtube.com/watch?v=HiNd3e3UnMc

Montiel, M., Wilhelmi, M., Vidakovic, D., & Elstak, I. (2009). Using the Onto-Semiotic Approach to Identify and Analyze Mathematical Meaning when Transiting between Different Coordinate Systems in a Multivariate Context. Educationa Studies in Mathematics, 72(2), 139-160.

Montiel, M., & Gómez, F. (2014). Music in the pedagogy of mathematics. Journal of Mathematics and Music, 8(2), 151-166.

Noll, T. (2014). Getting involved with mathematical music theory. Journal of Mathematics and Music, 8(2), 167-182.

Peck, R. (2014). Mathematical music theory pedagogy and the «New Math». Journal of Mathematics and Music, 8(2), 145-150.

Roig-Francolí, M.A. (2007). Anthology of Post-Tonal Music. Nueva York: McGraw-Hill Education.

Toussaint, G. (2013). The Geometry of Musical Rhythm. Londres: Chapman and Hall/CRC.

Wallace, D. (2000). Mathematics Across the Curriculum at Dartmouth. Focus. The Newsletter of the Mathematical Association of America, 20(3), 6-7.

Published

2017-01-01

How to Cite

A pilot experiment in integrated interdisciplinary teaching at the university level: mathematics and music. (2017). Foro De Educación, 15(22), 1-30. https://doi.org/10.14516/fde.532

Similar Articles

71-80 of 209

You may also start an advanced similarity search for this article.